SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)
 Siddharth Nagar, Narayanavanam Road - 517583
 QUESTION BANK (DESCRIPTIVE)

Subject with Code: Switching Theory and Logic Design
Course \& Branch: B.Tech \& ECE (20EC0403)

Year \& Sem: II B.Tech \& I Sem
Regulation: R20

UNIT-I

BOOLEAN ALGEBRA AND LOGIC GATES

1.	a) Define Boolean Algebra and list the postulates used in it.	[L1][CO1]	[6M]
	b) State and prove any four Boolean theorems of Boolean algebra.	[L3][CO1]	[6M]
2.	State and prove the following Boolean laws: i) Commutative ii) Associative iii) Distributive	[L3][CO1]	[12M]
3.	a) Prove De Morgan's theorems using Perfect Induction Method.	[L3][CO1]	[6M]
	b) Simplify the given Boolean expression to a sum of 3 terms. $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AC} \mathrm{C}^{\prime}+\mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$	[L4][CO2]	[6M]
4.	Simplify the following Boolean expressions: i) $\left(X^{\prime}+Z^{\prime}\right)\left(X+Y^{\prime}+Z^{\prime}\right)$ ii) $\left(X^{\prime} Y^{\prime}+Z\right)^{\prime}+Z+X Y+W Z$ iii) $\mathrm{A}^{\prime} \mathrm{B}\left(\mathrm{D}^{\prime}+\mathrm{C}^{\prime} \mathrm{D}\right)+\mathrm{B}\left(\mathrm{A}+\mathrm{A}^{\prime} \mathrm{CD}\right)$ iv) $\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime} \mathrm{D}\right)$	[L4][CO2]	[12M]
5.	a)Simplify the following Boolean functions to minimum number of literals: i) $\mathrm{F}_{1}=(\mathrm{a}+\mathrm{b})^{\prime}\left(\mathrm{a}^{\prime}+\mathrm{b}^{\prime}\right)^{\prime}$ ii) $F_{2}=y(w z \prime+w z)+x y$	[L4][CO2]	[6M]
	b) State and prove Consensus Theorem and Absorption Theorem of Boolean algebra.	[L3][CO1]	[6M]
6.	Identify the Dual of the following Boolean expressions. (i) $\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{AB}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ (ii) $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{ABC} \mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$	[L2][CO1]	[12M]
7.	Find the complement of the following Boolean expressions. i) $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+(\mathrm{B}+\mathrm{C}+\mathrm{D})^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$ ii) $\mathrm{AB}+(\mathrm{AC})^{\prime}+(\mathrm{AB}+\mathrm{C})$ iii) $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}{ }^{\prime}$ iv) $\mathrm{AB}+(\mathrm{AC})^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}$	[L3][CO1]	[12M]
8.	a) Express the following functions in Sum of Minterms and Product of Maxterms. i) $F_{1}(A, B, C, D)=B^{\prime} D+A^{\prime} D+B D$ ii) $\mathrm{F}_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{xy}+\mathrm{z})(\mathrm{xz}+\mathrm{y})$	[L2][CO1]	[6M]
	b) Express the following Boolean functions into Canonical form. i) $F_{1}=A B+B C+C A$ ii) $\mathrm{F}_{2}=\mathrm{XY}+\mathrm{Z}+\mathrm{YZ}+\mathrm{XYZ}$	[L2][CO1]	[6M]
9.	a) Simplify the given Boolean function, F to minimum number of literals using Boolean algebra. $F=X Y^{\prime} Z+X^{\prime} Y^{\prime} Z+W^{\prime} X Y+W X^{\prime} Y+W X Y$	[L4][CO1]	[6M]
	b) Draw the logic diagram for the simplified expression of the above using AOI logic.	[L1][CO2]	[6M]
10	a) List the different Boolean expressions for Two binary Variables.	[L1][CO1]	[6M]
	b) What are Universal Gates? Give their truth tables and Graphic symbols.	[L1][CO1]	[6M]

UNIT -II

GATE - LEVEL MINIMIZATION

1.	a) List the steps involved in simplification of K-Map.	[L1][CO1]	[6M]
	b) Simplify the Boolean expression, $\mathrm{F}=\mathrm{A}$ ' $+\mathrm{AB}+\mathrm{ABD}$ ' +AB ' D ' +C ' using Four Variable K-Map and draw the logic diagram using AOI.	[L4][CO2]	[6M]
2.	a) Simplify the Boolean function using Five Variable K-Map. $\mathrm{F}=\sum \mathrm{m}(0,1,2,4,7,8,12,14,15,16,17,18,20,24,28,30,31)$	[L4][CO2]	[6M]
	Apply the K-Map technique to simplify the given Boolean expression in POS form using K-Map $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,2,4,5,9,12,13,14)$	[L4][CO2]	[6M]
3.	a) Analyze the following Boolean function for minimal POS form using K-Map $F(X, Y, Z)=X^{\prime} Y Z+X Y^{\prime} Z^{\prime}+X Y Z+X Y Z '$	[L4][CO4]	[6M]
4.	b) Deduce the given Boolean function using K-Map. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,3,7,11,15)+\mathrm{d}(0,2,5)$	[L4][CO2]	[6M]
	a) Simplify using K-Map and express the reduced expression in SOP and POS form. $\mathrm{F}=\Sigma \mathrm{m}(0,6,8,13,14)+\Sigma \mathrm{d}(2,4,10)$	[L4][CO2]	[6M]
5.	b) Develop the logic diagram for the following Boolean function using NAND and NOR gates. $\mathrm{Y}=\left(\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}\right)\left(\mathrm{C}^{2}+\mathrm{D}^{\prime}\right)$.	[L3][CO5]	[6M]
	a) Explain the disadvantage of K-Map method of reducing a Boolean function and how to overcome it.	[L2][CO1]	[6M]
6.	Simplify the following expression using K-Map and realize with NAND and NOR gates. $\mathrm{F}=\pi \mathrm{M}(1,2,3,8,9,10,11,14) . \pi \mathrm{d}(7,15)$	[L4][CO2]	[12M]
7.	a) Explain the structure of Ex-OR gate by K-Map using 4 Variable.	[L2][CO1]	[6M]
	b) Explain the Quine-Mc Cluskey method of minimizing the Boolean functions. Also mention its limitation.	[L2][CO1]	[6M]
8.	Simplify the following Boolean function by using Tabulation method. $F=\Sigma(0,1,2,8,10,11,14,15)$	[L4][CO2]	[12M]
9.	Determine the prime-implicants, essential prime implicants and simplified expression for the following function. $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,4,5,9,10,11)+\Sigma \mathrm{d}(6,8)$	[L4][CO2]	[12M]
10.	Simplify the following Boolean function using Tabulation method, and realize its logic circuit with NAND gates and NOR gates. $\mathrm{Y}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,5,8,9,11,15)$	[L4][CO2]	[12M]

UNIT -III
 COMBINATIONAL LOGIC

1	a) Define Combinational Circuit and Explain the analysis procedure of a combinational logic circuit using suitable example.	[L2][CO1]	[6M]
	b) Explain the procedure of designing a combinational logic circuit with an example.	[L2][CO1]	[6M]
2	a) Define a Full Adder and realize it with use of truth table.	[L3][CO5]	[6M]
	b) Design a Full Subtractor using truth table.	[L3][CO5]	[6M]
3	a) Design a 4 bit parallel adder/ Subtractor using full adders.	[L3][CO5]	[6M]
	b) Design \& implement a 4-bit Binary-to-Gray code converter.	[L3][CO4]	[6M]
4	a) Design a 4 bit Binary-to-BCD code converter.	[L3][CO4]	[6M]
	b) Construct a BCD Adder-circuit using 4-bit binary adders.	[L3][CO5]	[6M]
5	Explain Binary Multiplier with an example.	[L2][CO3]	[12M]
6	a) Explain a 2-bit Magnitude comparator and write down its design procedure.	[L2][CO3]	[6M]
	b) Design \& implement Full Adder using Decoder.	[L3][CO4]	[6M]
7	a) Define Decoder and explain in detail about a 2 to 4 line binary decoder.	[L2][CO5]	[6M]
	b) Draw the circuit for 3 to 8 decoder and explain.	[L2][CO5]	[6M]
8	a) Illustrate the following Boolean functions using decoder and OR gates. $\begin{aligned} & \text { F1(A,B,C,D) }=\sum(2,4,7,9) \\ & \text { F2(A,B,C,D) }=\sum(10,13,14,15) \end{aligned}$	[L3][CO5]	[6M]
	b) What is an encoder? Design an octal to binary encoder.	[L3][CO6]	[6M]
9	a) Define Multiplexer. Construct 4:1 multiplexer with logic gates and truth table.	[L3][CO4]	[6M]
	b) Represent the following Boolean function with an $8: 1$ multiplexer. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{BD}{ }^{\prime}+\mathrm{ACD}+\mathrm{B}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$.	[L2][CO4]	[6M]
10	a) What is Demultiplexer? Design an1:8 demultiplexer using two 1:4 demultiplexer.	[L3][CO4]	[6M]
	b) Design a 32:1 Mux using two 16:1 MUXs and one 2:1 MUX.	[L3][CO4]	[6M]

UNIT -IV SYNCHRONOUS SEQUENTIAL LOGIC

1.	a) Define a sequential logic circuit and sketch its block diagram.	[L1][CO1]	[4M]
	b) Differentiate between combinational and sequential circuits.	[L2][CO1]	[4M]
	c) Differentiate between synchronous and asynchronous sequential circuits.	[L2][CO1]	[4M]
2.	a) Define Latch and list different types of Latches.	[L1][CO1]	[4M]
	b) Define Flip-Flop. What are the different types of Flip-Flops?	[L1][CO1]	[4M]
	c) Explain the working principle of RS Flip-Flop with the help of logic diagram and give its Characteristic Table and Graphic symbol.	[L2][CO3]	[4M]
3.	a) With the help of logic diagram, obtain the characteristic table of D \& T FlipFlops. Also draw their graphic symbols.	[L2][CO3]	[6M]
	b) Explain the working principle of JK Flip-Flop in detail. Also give its characteristic equation, Graphic symbol and Excitation equation.	[L2][CO3]	[6M]
4.	a) Derive the characteristic equations for D \& T Flip-Flops.	[L3][CO2]	[6M]
	b) Convert SR flip flop into JK Flip-Flop. Draw and explain its logic diagram.	[L2][CO4]	[6M]
5.	a) Design T Flip Flop using JK Flip-Flop and explain its logic diagram.	[L3][CO5]	[6M]
	b) Explain the steps involved in analysis of the clocked sequential circuits.	[L2][CO3]	[6M]
6.	a) Derive the excitation tables for SR, D, JK, and T Flip-Flops.	[L3][CO3]	[6M]
	b) Define a Shift register and explain its types.	[L2][CO1]	[6M]
7.	Design a 4 bit Decade counter.	[L4][CO6]	[12M]
8.	a) Define a counter and design a 4-bit Ripple counter.	[L1][CO6]	[8M]
	b) Explain in brief about a 2-bit synchronous up-counter.	[L2][CO6]	[4M]
9.	What is a synchronous counter? Design a 3-bit synchronous up/down counter.	[L4][CO6]	[12M]
10.	Explain about the following counters in detail. i) Ring counter ii) Johnson counter	[L2][CO3]	[12M]

UNIT -V
 FINITE STATE MACHINES AND PROGRAMMABLE MEMORIES

1.	a) Define Mealy model and explain it with neat diagram.					[L1][CO1]	[4M]
	b) Define Moore model. Explain it with neat diagram.					[L1][CO1]	[4M]
	c) Distinguish between Mealy \& Moore machines.					[L2][CO1]	[4M]
2.	Explain the following related to sequential circuits with suitable examples: a) State diagram b) State table c) State assignment					[L2][CO1]	[12M]
3.	Derive the simplified sequential circuit for the following state table.					[L3][CO6]	[12M]
	Derive the simplif	Next State		Output			
		$\mathrm{X}=0$	X=1	X=0	$\mathrm{X}=1$		
	A	a	b	0	0		
	B	c	d	0	0		
	C	a	d	0	0		
	D	e	f	0	1		
	E	a	f	0	1		
	F	g	f	0	1		
	G	a	f	0	1		
4.	Determine the minimal state equivalent of the state table given.					[L3][CO6]	[12M]
	PS	Next State		Output			
		$\mathrm{X}=0$	$\mathrm{X}=1$	X=0	$\mathrm{X}=1$		
	A	a	b	0	0		
	B	c	g	0	1		
	C	a	d	0	0		
	D	e	f	0	1		
	E	c	g	0	1		
	F	a	b	0	0		
	G	E	f	0	1		
5.	Explain in brief about Programmable Read Only Memory (PROM) with a suitable example.					[L2][CO2]	[12M]
6.	a) Compare ROM and RAM.					[L2][CO1]	[6M]
	b) Classify various types of RAMs.					[L2][CO1]	[6M]
7.	Illustrate the PLA for the following Boolean function. (i) $\mathrm{F}_{1}=\Sigma \mathrm{m}(0,1,3,4)$ (ii) $\mathrm{F}_{2}=\Sigma \mathrm{m}(0,1,2,3,4,5)$.					[L3][CO5]	[12M]
8.	Illustrate PLA for the following Boolean function.$\begin{aligned} & \mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(3,5,7) \\ & \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(4,5,7) \end{aligned}$					[L3][CO5]	[12M]
9.	Illustrate the PAL for the following Boolean functions. (i) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(2,3,8,9,10,12,13)$ (ii) $\mathrm{G}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,4,6,9,12,14)$					[L3][CO5]	[12M]
10.	Illustrate the PAL for the following Boolean functions. (i) $\mathrm{A}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13)$ (ii) $\mathrm{B}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}))=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13,14)$					[L3][CO5]	[12M]

